مكانيك كلاسيك يكي از قديميترين و آشناترين شاخههاي فيزيك است. اين شاخه با اجسام در حال سكون و حركت ، و شرايط سكون و حركت آنها تحت تاثير نيروهاي داخلي و خارجي ، سرو كار دارد. قوانين مكانيك به تمام گستره اجسام ، اعم از ميكروسكوپي يا ماكروسكوپي، از قبيل الكترونها در اتمها و سيارات در فضا يا حتي به كهكشانها در بخشهاي دور دست جهان اعمال ميشود.
سينماتيك حركت:
سينماتيك به توصيف هندسي محض حركت ( يا مسيرهاي) اجسام ، بدون توجه به نيروهايي كه اين حركت را ايجاد كردهاند ، ميپردازد. در اين بررسي عاملين حركت (نيروهاي وارد بر جسم) مد نظر نيست و با مفاهيم مكان ، سرعت ، شتاب ، زمان و روابط بين آنها سروكار دارد. در اين علم ابتدا اجسام را بصورت ذره نقطهاي بررسي نموده و سپس با مطالعه حركت جسم صلب حركت واقعي اجسام دنبال ميشود.
حركت اجسام به دو صورت مورد بررسي است:
سينماتيك انتقالي:
در اين نوع حركت پارامترهاي سيستم به صورت خطي هستند و مختصات فضايي سيستمها فقط انتقال مييابد. از اينرو حركت انتقالي مجموعه مورد بررسي قرار ميگيرد. كميت مورد بحث در سينماتيك انتقالي شامل جابهجايي ، سرعت خطي ، شتاب خطي ، اندازه حركت خطي و...ميباشد.
سينماتيك دوراني:
در اين نوع حركت برخلاف حركت انتقالي پارامتر اصلي حركت تغيير زاويه ميباشد. به عبارتي از تغيير جهت حركت ، سرعت و شتاب زاويهاي حاصل ميشود. و مختصات فضايي سيستم ها فقط دوران مييابند. جابهجايي زاويهاي ، سرعت زاويهاي ، شتاب زاويهاي و اندازه حركت زاويهاي از جمله كميات مورد بحث در اين حركت ميباشند.
ديناميك حركت :
ديناميك به نيروهايي كه موجب تغيير حركت يا خواص ديگر ، از قبيل شكل و اندازه اجسام ميشوند ميپردازد. اين بخش ما را با مفاهيم نيرو و جرم و قوانين حاكم بر حركت اجسام هدايت ميكند. يك مورد خاص در ديناميك ايستاشناسي است كه با اجسامي كه تحت تاثير نيروهاي خارجي در حال سكون هستند سروكار دارد.
پايه گذاران مكانيك كلاسيك:
با اين كه شروع مكانيك از كميت سرچشمه ميگيرد ، در زمان ارسطو فرايند فكري مربوط به آن گسترش سريعي پيدا كرد. اما از قرن هفدهم به بعد بود كه مكانيك توسط گاليله ، هويگنس و اسحاق نيوتن بدرستي پايهگذاري شد. آنها نشان دادند كه اجسام طبق قواعدي حركت ميكنند ، و اين قواعد به شكل قوانين حركت بيان شدند. مكانيك كلاسيك يا نيوتني عمدتا با مطالعه پيامدهاي قوانين حركت سروكار دارد.
قوانين سه گانه اسحاق نيوتن راه مستقيم و سادهاي به موضوع مكانيك كلاسيك ميگشايد.اين قوانين عبارتند از:
قانون اول نيوتن:
هر جسمي به حالت سكون يا حركت يكنواخت خود در روي يك خط مستقيم ادامه ميدهد مگر اينكه يك نيروي خارجي خالص به آن داده شود و آن حالت را تغيير دهد.
قانون دوم نيوتن:
آهنگ تغيير تكانه خطي يك جسم با برآيند نيروهاي وارد بر آن متناسب بوده و در جهت آن قرار دارد.
قانون سوم نيوتن:
اين قانون كه به قانون عمل و عكسالعمل معروف است ، اينگونه بيان ميشود. هر عملي را عكس العملي است ، مساوي با آن و در خلاف جهت آن.
فرمولبندي لاگرانژي مكانيك كلاسيك:
در برسي حركت اجسام به كمك قوانين نيوتون اجسام به صورت ذرهاي در نظر گرفته ميشود. بنابراين ، بررسي حركات سيستم هاي چند ذرهاي ، اجسام صلب ، دستگاههاي با جرم متغير ، حركات جفت شده و ... به كمك قوانين اسحاق نيوتن به سختي صورت ميگيرد. لاگرانژ و هاميلتون دو روش مستقلي را براي حل اين مشكل پيشنهاد كردند. در اين روشها براي هر سيستم يك لاگرانژين (هاميلتونين) تعريف كرده ، سپس به كمك معادلات اويلر-لاگرانژ (هاميلتون-ژاكوپي) حركات محتمل سيستمها مورد بررسي قرار ميگيرد.
موارد شكست فرمولبندي اسحاق نيوتن :
تا آغاز قرن حاضر . قوانين اسحاق نيوتن بر تمام وضعيتهاي شناخته شده كاملا قابل اعمال بودند. مشكل هنگامي بروز كرد كه اين فرمولبندي به چند وضعيت معين زير اعمال شدند:
اجسام بسيار سريع:
اجسامي كه با سرعت نزديك به سرعت نور حركت ميكنند.
اجسام با ابعاد ميكروسكوپي مانند الكترونها در اتمها.
شكست مكانيك كلاسيك در اين وضعيتها ، نتيجه نارسايي مفاهيم كلاسيكي فضا و زمان است.
مكمل مكانيك كلاسيك:
مشكلات موجود در سر راه مكانيك كلاسيك منجر به پيدايش دو نظريه زير شد:
فرمولبندي نظريه نسبيت خاص براي اجسام متحرك با سرعت زياد
فرمولبندي مكانيك كوانتومي براي اجسام با ابعاد ميكروسكوپي
مكانيك لاگرانژي
اطلاعات اوليه
كاربرد مستقيم قوانين حركت نيوتن براي حركت سيستمهاي ساده راحت و آسان است. اما در صورتي كه تعداد ذرات سيستم بيشتر شود، در اين صورت استفاده از قوانين نيوتن كار دشواري خواهد بود. در اين حالت از يك روش عمومي ، پيچيده و بسيار دقيق كه به همت رياضيدان فرانسوي ژوزف لويي لاگرانژ ابداع شده است، استفاده ميشود. به اين ترتيب ميتوان معادلات حركت براي تمام سيستمهاي ديناميكي را پيدا كرد. اين روش چون نسبت به معادلات نيوتن حالت كلي تري دارد، لذا در مورد حالتهاي ساده كه با معادلات حركت نيوتن به راحتي حل ميشود، نيز قابل اعمال است.
مختصات تعميم يافته
موقعيت يك ذره در فضا را ميتوان با سه سيستم مختصات مشخص كرد. اين سيستمها عبارتند از سيستمهاي كارتزين ، كروي و استوانهاي ، يا در حقيقت هر سه پارامتر مناسب ديگري كه انتخاب شده باشند. اگر ذره مجبور به حركت در يك صفحه يا سطح ثابت باشد فقط به دو مختصه براي مشخص كردن موقغيت ذره نياز است، در حاليكه اگر ذره روي يك خط مستقيم يا يك منحني ثابت حركت كند، ذكر يك مختصه كافي خواهد بود. اما در مورد يك سيستم متشكل از N ذره ، براي تشخيص كامل موقعيت همزمان تمام ذرات به 3N مختصه نياز خواهيم داشت.
اگر محدوديتهاي بر سيستم اعمال شده باشد، تعداد مختصات لازم براي مشخص كردن پيكربندي كمتر از 3N خواهد بود. به عنوان مثال ، اگر سيستم مورد نظر يك جسم صلب باشد، براي مشخص كردن پيكربندي آن فقط به موقعيت مكاني يك نقطه مرجع مناسب از جسم (مثلا مركز جرم) و جهت يابي آن نقطه در فضا احتياج داريم. بنابراين در حالت كلي براي مشخص كردن پيكربندي يك سيستم خاص ، احتياج به تعداد حداقل معين n مختصه نياز است. اين مختصات را مختصات تعميم يافته ميگويند.
نيروي تعميم يافته
در سيستم مختصات تعميم يافته ، به جاي نيروهايي كه در مكانيك كلاسيك نيوتني معمول است، مرتبط با هر مختصه نيرويي تعريف ميشود كه به نام نيروي تعميم يافته معروف است. اين كميت كه با استفاده از تعريف كار محاسبه ميشود، به اين صورت است كه حاصل ضرب آن در مختصه تعميم يافته داراي ابعاد كار است. بنابراين اگر مختصه تعميم يافته داراي بعد فاصله باشد در اين صورت اين كميت از جنس نيرو خواهد بود. در صورتيكه مختصه تعميم يافته از نوع زاويه باشد، در اين صورت اين كميت داراي بعد گشتاور خواهد بود. يعني متناسب با نوع مختصه تصميم يافته ميتواند از جنس نيرو و يا گشتاور نيرو باشد.
معادلات لاگرانژ
براي بررسي حركت يك سيستم در مكانيك لاگرانژي انرژي جبنشي و انرژي پتانسيل سيستم را تعيين ميكنند. اين كار به اين صورت ميگيرد كه در مكانيك لاگرانژين در مورد هر سيستم دو كميت جديد به نامهاي لاگرانژين و هاميلتونين تعريف ميشود. لاگرانژين برابر تفاضل انرژي پتانسيل از انرژي جنبشي است. در صورتي كه هاميلتون برابر با مجموع انرژي جنبشي و انرژي پتانسيل سيستم است. در واقع ميتوان گفت كه كار اصلي تعيين و محاسبه صحيح انرژي جنبشي و پتانسيل است.
سپس اين مقادير در معادلهاي كه به معادله لاگرانژ حركت معروف است قرار داده ميشود. معادله لاگرانژ ، معادلهاي است كه بر حسب مشتقات تابع لاگرانژي نسبت به مختصات تعميم يافته و نيز مشتق زماني مشتقات تابع لاگرانژي نسبت به سرعتهاي تعميم يافته نوشته شده است. به عبارت ديگر اگر تابع لاگرانژي را با L نشان دهيم و مختصات تعميم يافته را با qk و سرعتهاي تعميم يافته را با qk (كه نقطه بيانگر مشتق زماني مختصه تعميم يافته qk است) نشان دهيم، معادلات لاگرانژ به صورت زير خواهد بود:
در صورتي كه نيروهاي موجود در سيستم همگي پايستار نباشند، به عنوان مثال يك نيروي غير پايستار مانند اصطكاك وجود داشته باشد در اين صورت در طرف دوم معادلات لاگرانژ عبارت Qk كه بيانگر نيروي تعميم يافته غير پايستار است، نيز اضافه ميشود.
معادلات لاگرانژ براي تمام مختصات يكسان هستند. اين معادلات ، روش يك نواختي براي بدست آوردن معادلات ديفرانسيل حركت يك سيستم در انواع سيستمهاي ارائه خواهند داد.
اصل تغييرات هاميلتون
روش ديگر براي استنتاج معادلات لاگرانژ اصل تغييرات هاميلتوني است. در اين حالت همانگونه كه قبلا نيز اشاره شد در مورد هر سيستم كميتي به نام تابع هاميلتوني تعريف ميشود كه برابر با مجموع انرژي جنبشي و انرژي پتانسيل سيستم است. اين اصل در سال 1834 توسط رياضيدان اپرلندي ويليام .ر. هاميلتون ارائه شد.
در اين روش فرض ميشود كه يك تابع پتانسيل وجود دارد، يعني سيستم تحت بررسي يك سيستم پاياست. ولي اگر تعدادي از نيروها نيز غير پايستار باشد مانند مورد معادلات لاگرانژ ميتوان سهم اين نيرو ها را نيز بطور جداگانه منظور كرد. يعني در اين حالت تابع هاميلتون برابر با مجموع انرژي جنبشي و كار انجام شده توسط تمام نيروها اعم از نيروهاي پايستار و غير پايستار است.
معادلات هاميلتون
معدلات هاميلتون از 2n معادله ديفرانسيل درجه اول تشكيل شده است. اين معادلات بر حسب اندازه حركت تعميم يافته و مشتقات آن نوشته ميشود. اندازه حركت تعميم يافته به صورت مشتقات تابع لاگرانژي نسبيت به سرعت تعميم يافته تعريف ميشود. بنابراين اين معادلات زير خواهند بود.
در عبارت فوق qk بيانگر سرعت تعميم يافته است و علامت نقطه در بالاي Pk (اندازه حركت تعميم يافته) بيانگر مشتق زماني است. اگر معادلات هاميلتون را با معادلات لاگرانژي مقيسه كنيم ملاحظه ميشود كه تعداد اولين معادلات زياد است. يعني اگر سيستم V با N مختصه يافته مشخص شود، در اين صورت معادلات هاميلتون شامل 2n معادله ديفرانسيل درجه اول هستند، در صورتيكه معادلات لاگرانژ از n معادله درجه دوم تشكيل شده است. بنابراين كار كردن با معادلات هاميلتون راحتتر است. معمولا در مكانيك كوانتومي و مكانيك كاري از معادلات هاميلتون استفاده ميشود.
No comments:
Post a Comment