Search This Blog

Wednesday, January 19, 2011

ترمودینامیک


قانون اول ترمودینامیک که به عنوان قانون بقای کار و انرژی نیز شناخته می‌شود، می‌گوید که حالت تعادل ماکروسکوپی یک سیستم با کمیتی به نام انرژی درونی (U) بیان می‌شود. انرژی درونی دارای خاصیتی است که برای یک سیستم منزوی (ایزوله) داریم:
U=مقدار ثابت

اگر به سیستم اجازهٔ برهم‌کنش با محیط داده شود، سیستم از حالت ماکروسکوپی اولیهٔ خود به حالت ماکروسکوپی دیگری منتقل می‌شود که تغییر انرژی درونی را برای این تحول (فرآیند) می‌توان به شکل زیر نشان داد:
ΔU = Q + W

که در این فرمول W، کار ماکروسکوپی انجام شده توسط سیستم در برابر نیروی خارجی و Q مقدار گرمای جذب شده توسط سیستم در طی این فرآیند است.
[ویرایش]
نمادگذاری
[ویرایش]
شیمی و فیزیک

چون در شیمی و فیزیک سیستم مورد توجه‌است، گرما و کاری که به سیتم داده می‌شود مورد نظر ماست و انرژی درونی را Q+W در نظر می‌گیریم. (سیستم را بسته، در حالت سکون و در غیاب میدان‌ها در نظر می‌گیریم)
,


که در آن
dU یک افزایش بی‌اندازه کوچک در انرژی درونی سیستم است.,
δQ یک مقدار بی‌اندازه کوچک از گرما که به سیستم افزوده می‌شود,
δW یک کار بی‌اندازه کوچک که بر روی سیستم انجام می‌شود و
δ نماد دیفرانسیل است.

در واقع تعریف قانون اول چنین است : اگر به سیستمی گرما داده شود و یا از آن گرما گرفته شود، انرژی درونی سیستم تغییر خواهد نمود که حاصل آن کار انجامشده توسط سیستم و یا کار مورد نیاز سیستم برای تغییر انرژی درونی خواهد بود .
قانون اول ترمودینامیک تنها بیانی از تئوری کار و انرژی یا قانون بقای انرژی است. یک آونگ ساده یا یک آونگ ایده‌آل برای همیشه به نوسان ادامه می‌دهد. فیلمی از یک آونگ که به جلو و عقب نوسان می‌کند را در نظر بگیرید. اگر ما فیلم را برعکس نشان بدهیم، نخواهیم توانست آن را از حالت عادی تشخیص بدهیم.

اما برداری (نشانگری) برای زمان وجود دارد. دامنهٔ نوسان آونگ به تدریج کوجکتر می‌شود. اگر توپی را از ارتفاع خاصی رها کنید، در هر بار برخورد توپ با زمین، کمتر از دفعهٔ قبل بالا خواهد آمد. فیلمی از این توپ در دنیای واقعی، هنگام پخش برعکس، متفاوت دیده خواهدشد. قطعات یخ در داخل فنجان چای ذوب می‌شوند در حالی که چای سردتر می‌شود.

هیچ تناقضی با قانون اول ترمودینامیک نخواهد داشت اگر ما ببینیم که در داخل یک فنجان چای قطعات یخ تشکیل شده و چای گرمتر شود. این با قانون بقای انرژی سازگار است اما «ما هیچگاه چنین چیزی را نمی‌بینیم». قانون دوم ترمودینامیک توضیح می‌دهد که چرا چنین چیزی اتفاق نمی‌افتد.
بیان کلوین-پلانک

ساخت یک موتور گرمایی سیکلی (چرخه‌ای) که جز جذب گرما از منبع و انجام کار مساوی با گرمای جذب شده تأثیر دیگری بر محیط نداشته باشد، غیر ممکن است.

یا می‌توان گفت که: ساخت ماشین گرمایی با بازدهی ۱۰۰ درصد غیرممکن است.

به بیان ساده‌تر امکان ندارد یک ماشین گرمایی تمام انرژی را که طی یک چرخه از منبع گرم به دست می‌آورد به کار تبدیل کند؛ بلکه مقداری از این انرژی به صورت انرژی تلف شده به منبع سرد داده می‌شود.
بیان کلازیوس

ساخت یک موتور سیکلی که تأثیری جز انتقال مداوم گرما از دمای سرد به دمای گرم نداشته باشد، غیر ممکن است.

به بیان ساده تر امکان ندارد که یک یخچال طی یک چرخه، تمام انرژی را که از منبع سرد دریافت می‌کند به منبع گرم انتقال دهد؛ بلکه مقداری از این انرژی را طی این فرایند به کار تبدیل می‌کند.
مانند یخچال که تا کاری انجام ندهد یا به عبارت دیگر تا انرژی الکتریکی مصرف نکند آب را به یخ تبدیل نمی‌کند.یا اگر ما بخواهیم آب را از روی سطح زمین در ارتفاع ۱۰ متری زمین ببریم احتیاج به موتور و انجام کار است.پس تا زمانی کاری صورت نگیرد نمی‌توان گرما را از منبع سرد گرفته و آن را به منبع گرم بدهیم.
ارتباط این دو بیان

این دو بیان قانون دوم ترمودینامیک معادل (هم‌ارز) هستند. اگر بتوان یکی از آنها را نقض کرد، دیگری نیز نقض می‌شود.

قانون سوم ترمودینامیک می‌گوید هنگامی که انرژی یک سیستم به حداقل مقدار خود میل می‌کند، انتروپی سیستم به مقدار قابل چشم‌پوشی می‌رسد. یا بطور نمادین: هنگامی که ،

از رابطهٔ بین انرژی درونی و دما، رابطهٔ بالا را می‌توان به صورت زیر نوشت:
هنگامی که ،   




اما در هنگام کاربرد این قانون باید توجه داشت که در این دما () سیستم در حال تعادل است یا نه. زیرا با پایین آمدن دما، سرعت رسیدن به تعادل خیلی زیاد می‌شود.
 

No comments:

Post a Comment